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ABSTRACT

A new fiber optic probe developed for determining transport properties of sub-micron particles in fluids experiments
in a microgravity environment has been applied to study different parts of the eye. The  probe positioned in front of an
eye, delivers a low power (~ few µW)  light from a laser diode into the eye and guides the light which is back scattered
by different components (aqueous humor, lens, and vitreous  humor) of the eye through a receiving optical fiber to a photo
detector.   The probe provides rapid determination of macromolecular diffusivities  and their respective size distributions
in the eye lens and the gel-like  material in the vitreous humor.   For a clinical use, the probe is  mounted on a standard
slit-lamp apparatus simply using a Hruby lens holder.  The capability of detecting cataracts, both nuclear and cortical,
in their early stages of formation, in a non invasive and  quantitative fashion, has the potential in patient monitoring and
in  developing and testing new drugs or diet therapies to “dissolve” or slow  down the cataract formation before the surgery
becomes necessary.  The ability to detect biochemical and macromolecular changes in the vitreous  structure can be very
useful in identifying certain diseases of the posterior chamber and their complications, e.g., posterior vitreous
detachment and diabetic retinopathy.

INTRODUCTION

The anterior chamber (space between the cornea and the lens) of a normal adult eye the eye is filled with a transparent
water-like fluid known as aqueous humor.  However, presence of elevated cholesterol and  blood-sugar levels in patients
with heart and diabetic related diseases  can be identified in this fluid.  An adult human lens is the size of an aspirin tablet.
At birth the lens tissue is transparent.  With age the lens gradually loses its transparency.  The lens transparency can also
be lost because of trauma, certain diseases (e.g. diabetes, uremia, chronic diarrhea), hereditary factors, radiation
exposure, and continued use of certain medications over a long period of time including steroids, tranquilizers
(phenothiazines), gout medications  (allopurinol), psoriasis medications (psoralens), and antibiotics  (tetracycline).  A
cataract is formed when the lens cloudiness hinders  light transmission through the lens and the ability to focus a sharp
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image on the retina.  Cataracts remain the major cause of blindness affecting about 50 million people each year
worldwide.  It is estimated  that over $5 billion will be spent this year in treating cataract  patients in the United States
alone (Shulman, 1993).  There is no medical treatment to prevent or halt the progression of a cataract; nor is there any
way to  reverse a cataract once it has formed.  The only known treatment is surgical. However, a medical treatment could
be possible if we  understand how a cataract forms and what makes it grow (Shulman, 1993).  The ability of  detecting
a cataract at the earliest stages of formation will be useful  in patient monitoring and in the development and in screening
possible  “anticataract” drugs or “diet” therapies.  Kupfer of the National Eye Institute  (NEI) of the National Institutes
of Health (NIH) predicts that by the year 2000 new drugs will slow the progression of cataracts which is the leading cause
of blindness worldwide (Long, 1992).  Most recently Sardi (1995) has strongly argued in favor of using multivitamins,
antioxidants, and nutritional supplements in eradicating cataracts.  In-between the lens and the retina a gel-like fluid
known as vitreous humor fills the rest  of the eye globe.  This fluid comprises 80% of the total volume of the  eye and
is the least understood component of an eye.  Vitreous diseases  can be detected by optically examining this fluid.

The technique of dynamic light scattering (DLS) or quasi-elastic light scattering (QELS) was first applied to the study
of cataractogenesis in  the pioneering work  of Tanaka and Benedek (1976).  An extensive review of using  QELS to study
cataracts has been given by Bursell et al (1990).   DLS/QELS  being a non-invasive and quantitative technique, seem to
hold promising potential in its use as a routine ophthalmic device.  But, its commercial  scope as an ophthalmic diagnostic
tool in clinical settings hitherto not materialized.  This is mainly due to bulky equipment, optical alignment problems,
polydisperse and interacting nature of the scattering species,  and radiation exposure time.  Since the original application
of QELS, some twenty years ago by Tanaka and Benedek (1976), every subsequent study focused on rather easily
accessible part (anterior chamber) of the eye  i.e. the aqueous humor and the lens.  Most recently Ansari and et  al. (1995a
and 1995b) in the USA and Rovati et al. (1995) in Switzerland reported the first  experiments directed to the studies of
the vitreous.

  In the past few years DLS instrumentation has embraced several new and innovative technological advances. The
immediate impact of these have resulted in the miniaturization of DLS instrumentation (Brown et al. 1990). About four
years ago a lens-less back-scatter fiber optic probe was developed by Dhadwal et al. (1991) to study concentrated
particulate dispersions.  Subsequently, Ansari et al. (1992) and Dhadwal et al. (1993) have shown the utility of this probe
to the studies of cataractogenesis in excised  bovine and cadaver eye lenses, and in live animals (Dhadwal, et al. 1995).
Unfortunately these preliminary studies have certain limitations and pose severe constraints in probing different parts
of the eye.  Ansari and Suh (1995) recently developed a new DLS probe to study nucleation and aggregation phenomena
during protein crystal growth in space (microgravity) experiments. Ansari et al. (1995) have also shown recently that this
probe  alleviates many major concerns discussed earlier when used as an ophthalmic diagnostics device and is much
superior in performance when compared with the earlier reported work (Ansari, et al. 1992; Dhadwal, et al. 1993; 1995).
The new probe provides accurate particle size determination of a variety of colloidal  dispersions in 5 seconds at extremely
low laser power levels. Furthermore, the major problem of probing different parts of the eye has been solved.  In this report
we briefly summarize some experimental in-vivo results on rabbits with naphtalene-induced cataract and on Philly mice,
with hereditary cataract.

EXPERIMENTAL  PROCEDURE AND SET UP

The laser light from a laser diode is transmitted by a compact  backscatter fiber optic probe to the eye. Depending upon
the position  of the scattering volume, Brownian motion of the particles in the  aqueous humor, protein crystallines inside
the lens and the  macromolecules in the vitreous humor are monitored. The incident laser  radiation interacts with the
submicron particles dispersed in different  regions of the eye.  The particles scatter light and the intensity of  this scattered
light fluctuates in time due to the Brownian or thermal motion of the dispersed particles in the suspending medium. In
a dynamic medium such as eye, when illuminated by laser light, a rapidly changing interference pattern due to the
differences in the optical  density of the scattering medium can be coherently detected by a DLS spectrometer.  The rapidly
fluctuating interference pattern at a photodetector contains information about the dynamics of the scattering  medium
and can be extracted by constructing a correlation function. A correlation function is constructed after detecting the
scattered light  by a photodetector and appropriate electronic processing via a  amplifier-discriminator stage and a digital
correlator.  In the simplest  case of dilute dispersions of spherical particles the slope of the  correlation function provides
quick and accurate determination of the  particle’s translation diffusion coefficient. The diffusion coefficient data can
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easily be transformed into average particle size,  using Stokes-Einstein equation, provided the viscosity of the suspending
medium, its temperature and refractive index are known.

A fiber optic probe comprising two monomode optical fibers and two GRIN micro lenses, as illustrated in Figure 1,
provides a compact and  remote means of studying the dynamical characteristics of the  macromolecules in the eye. A
1.3 cm (diameter) x 2.3 cm (length) fiber optic probe contains the necessary optics to perform DLS measurements at  a
scattering angle of 161.5°. The probe is non-invasive and is  conveniently positioned in front of the eye (cornea), but
having no physical contact with any part of the eye. Two monomode optical fibers, each housed in a stainless steel
ferrule, are mounted into a separate  stainless steel housing.  An air gap (0-0.5 mm) is intentionally left  between the fiber
housing and the lens housing in order to produce a tightly focused spot in the scattering volume. The two optical fibers
in their housings are aligned and fixed into position off-axis with the GRIN lens. The two housings are placed inside a
third (outer) housing  made of stainless steel, and the back end of the housing is covered with  a heat-shrink tubing.  The
two free ends of the optical fibers were  terminated with FC/PC-type male connectors for easy mating with the  laser diode
and an avalanche photodiode detector (APD). The DLS data was analyzed using the commercial software provided by
the Brookhaven Instruments Company of New York. The DLS probe is also equipped with a 2 mm fiberscope for imaging
the eye. This eye imaging provides records of beam position in the eye for patient documentation.

Monomode optical
fiber for receiving

Heat-shrink tubing

Monomode
optical fiber for
beam transmission

Outer
housing GRIN

lens

Fiber
housing Lens housing

Air gap
Fiber
ferrule
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Flexible
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Aqueous humor

Vitreous humor

Figure 1.—A compact device for eye diagnostics.
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RESULTS

The Philly mouse is a good animal model of hereditary cataract (Kador et al. 1980).  Philly mice develop cataracts
spontaneously between day 26 and 33 after their birth. We applied our new fiber optic probe to study the progression of
cataractogenesis in this mouse model and to show the feasibility and safe use of our device in laboratory animals.
Figure 2 shows DLS autocorrelation data on three Philly mice.  The data includes a 45 day old normal mouse of the
control FVB/N strain and two Philly mice roughly 26-29 days old. The slope of the correlation function gives a trans-
lational diffusion coefficient which can be converted into particle size and particle size distributions (see Ansari et al.
1995). One of us (MAD-an ophthalmologist) conducted eye examinations of these mice with a slit-lamp apparatus and
concluded a normal (transparent) and two other eyes having trace and mild cataracts. These examinations were
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Figure 2.—In-vivo DLS eye diagnostic measurements in live Philly mice.
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conducted soon (within few minutes) after the DLS measurements were completed. Each measurement only took
5 seconds at a laser power of 50 µW.  The changing slope of the autocorrelation functions is an indication of
cataractogenesis.  The DLS autocorrelation data is converted into particle size distribution using a exponential sam-
pling program and is shown in Figure 3 (a-c). Although conversion of the DLS data into particle size distributions
require certain assumptions regarding the viscosity of the lens fluid these size values do indicate a trend as the cataract
progress. These measurements suggest that we can quantitatively monitor cataractogenesis with reasonable reliability,
reproducuibility (5%-10%), and accuracy.

Figure 4 and 5 shows autocorrelation function profiles of two Belgian-belted rabbits. Both rabbits were about six
months in age. One rabbit was kept on a normal diet while the other rabbit was fed 1 gm of naphthalene per 1 Kg of
body weight for 3 days per week for a period of three weeks.  One of us (MAD) regularly monitored the progression of
cataract in these rabbits as a function of time using a slit-lamp apparatus until a mild cataract was noticed. The DLS
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Figure 5.—In-vivo DLS eye diagnostic measurements in live rabbits. Naphthalene
   induced cataract on rabbits.
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Figure 4.—In-vivo DLS eye diagnostic measurements in live rabbits.
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measurements were performed in the anterior cortex (see Figure 4) and in the nucleus (Figure 5). In the anterior cortex
we do not see any appreciable change in the slope of the correlation functions in either eyes of either the controlled or
the naphthalene-fed rabbit. The change in slopes in the correlation functions of the cortex and the lens nucleus in the
normal rabbits is consistent with earlier observations (Ansari et al. 1995, and Libondi et al. 1986). In the nuclear region
(Figure 4) we see appreciable change in the slope of the correlation functions due to mild cataracts in the naphthalene-
fed rabbit.  These preliminary results are now guiding us into a research effort to study a group of several controlled and
naphthalene-induced cataract rabbits to get a detailed understanding of cataractogenesis.

In Figure 6 we present preliminary results identifying detailed crystalline structure of a transparent excised bovine
eye lens. A 3-D plot is constructed after scanning the lens by the new fiber optic probe. This plot shows average protein
size (α-crystalline+aggregates) as one moves from the anterior cortex to nucleus to posterior cortex inside the lens
capsule.

The vitreous humor of the eye described by Sebag (1989) is the least  understood part of an eye.  We present preliminary
DLS measurements made in vivo.  The vitreous body exhibits a two-exponential behavior, i.e. a fast and a slowly
diffusing component, consistent with its gel-like  properties.  We see almost constant value for the fast component in this
region.  We ascribe this fast component due to the diffusion of  hyaluronate molecular coils in water and the slow diffusion
component  due to the collagen-fibril network.  A size distribution of the vitreous  is presented in Figure 7.  We calculated
the molecular weight for the  fast component to be 3.78 x 106 daltons.  This is consistent with the  range (2-4.5x106) of
values given by Balazs and Delinger (1984).  More in-vivo experimental work is being performed at this time in our
laboratory to fully understand the structure of the vitreous humor.

CONCLUSION

Our newly developed DLS probe for eye diagnostics offers several unique features.  These include use of extremely
low laser power levels (~10-50 µW), sufficient penetration depth to diagnose aqueous, lens, and the vitreous body,
touch free operation (no physical contact with the eye), fast data acquisition time (~2-10 seconds), high spatial coher-
ence (β) or signal/noise values, free of optical alignment, no need for vibration isolation devices, 100% solid state
(laser/detector) operation, and a modular approach which uses a Hruby lens holder on a regular slit-lamp apparatus
providing quantitative monitoring of the entire eye (see Figure 8).  The viewing area inside the eye can be controlled by
using the joy stick of the slit-lamp apparatus.  In addition to routine eye examination with a slit-lamp apparatus, our
method provides early  detection of cataracts, the characterization of hyaluronic acid chains and the collagen protein
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Figure 6.—3-D Scan of protein population in a
   excised bovine lens.
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A conventional
ophthalmoscope
(slit-lamp
apparatus) has
been modified to
incorporate the
new DLS probe
for complete eye
examination

Hruby
lens
holder

DLS
Probe

Figure 8.—A compact device for eye diagnostics.

Joystick

fibrils in the vitreous humor, and though not  demonstrated here, the characterization of protein molecules and the
metabolic waste product in the aqueous fluid in the anterior chamber of  the eye can also be achieved. The patient
correlation functions and the corresponding size distribution data can be integrated into OPIS® (Ophthalmic Patient
Information System) commercial computer software program, facilitating patient record keeping and follows up visits.

In terms of 1991 Medicare dollars, according to Kolberg (1995) $3.4 billion were paid for cataract surgery than for
any other single procedure. We therefore conclude that our new technology described in this paper opens up enormous
opportunity in eye care and in finding medical cures for the eradication of cataracts.
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